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Transformations of unsaturated compounds mediated by sto-
ichiometric quantities of zirconocene or titanocene complexes
have received widespread acceptance as valuable methods in
organic synthesis, and have been used as key reactions for the
total synthesis of natural products.2 Recently, the generation and
subsequent utilization of low-valent complexes of the type
(RO)2Ti(L) n as alternatives to Cp2M(L) n (M ) Ti, Zr) in many
reactions has been popularized.3,4 With the exception of a few
catalytic reactions,5-7 the vast majority of transformations involv-

ing (RO)2Ti(L) n equivalents require stoichiometric amounts of
the reagent.4 Although stoichiometric reactions utilizing inex-
pensive (i-PrO)3TiX reagents often generate intermediates con-
taining nucleophilic Ti-C bonds that can be used for further
manipulations, the discovery of newcatalytic processes should
permit the use ofspecializedRO- ligands for reaction profile
alteration as well as increased efficiency.5e In this context, it is
noteworthy that all of the catalytic transformations involving
(RO)2Ti(L)n complexes recorded to date require the use of at least
stoichiometric amounts of the driving organometallic reagent.5-7

In this communication, we wish to report the (ArO)2Ti-
catalyzed cycloisomerization of 1,6- and 1,7-dienes to methyl-
enecycloalkanes using catalytic amounts of both (ArO)4Ti and a
Grignard reagent.8

In an initial experiment, we found that the reaction of 1,6-
diene1a with catalytic amounts of Ti(O-i-Pr)4 (10 mol %) and
cyc-C6H11MgCl9 (25 mol %) in THF (0°C to room temperature,
24 h) afforded methylenecyclopentane2a (9%), the corresponding
saturated cyclopentane3a (7%), and recovered1a (84%) (eq 1
and entry 1 in Table 1). This result suggested that the reaction
could be rendered catalytic since the conversion (combined yield
of 2a and 3a) was greater than the amount of the titanium
complex. Accordingly, we investigated the reaction using several
Ti(OR)4 species to find the appropriate conditions for predominant
production of2a (entries 1-6, Table 1). It was discovered that
the use of (2,6-Me2C6H3O)4Ti7a as a precatalyst provided2a in
excellent yield (entry 6) and the amount of this titanium compound
could be reduced (entry 7). As is also revealed from these data,
the nature of the RO group affects the reaction both sterically
and electronically. In addition, the reaction may be subject to
termination by decomposition of active catalyst (entries 2 and
3). Under identical reaction conditions, (2,6-Ph2C6H3O)2TiCl2 did
not provide a good yield of2a.7 This is presumably due to steric
hindrance of the ArO groups and/or the diminished ability of the
Ti center to form an “ate” complex.

Table 2 summarizes representative examples of this reaction
using a variety of diene substrates1b-i. These results show the
following features of this cyclization: (1) All of the reactions
gave 2-methyl-1-methylenecycloalkanes, i.e., the coupling pro-
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Table 1. Effect of (RO)4Ti on Catalyzed Cyclisomerization
Reaction of 1,6-Dienes1a to 2a

entry (RO)4Ti yield of 2a (%)a

1 (i-PrO)4Ti (9)
2 (cyc-HexO)4Ti (38)
3 (cyc-HexO)4Ti (48 h) (39)
4 (PhO)4Ti (68)
5 (2,6-Ph2C6H3O)2TiCl2 (14)
6 (2,6-Me2C6H3O)4Ti (85)b

7c (2,6-Me2C6H3O)4Ti (5 mol %) (85)b
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ceeded in atail-to-tail fashion; (2) 4-substituted or 4,4-disubsti-
tuted 1,6-dienes are superior substrates for the formation of five-
membered-ring compounds; (3) the reaction can be applied to
the formation of six-membered-ring carbocycles (entry 7); (4)
highly diastereoselective cyclizations can be realized for appropri-
ate substrates (entry 7); (5) heterocycles, such as2f and2g, can
be synthesized by this methodology (entries 5 and 6); and (6)
the reaction is not suitable for 1,6-dienes possessing terminal
alkene substitution (entry 8).

It has been widely accepted that alkoxides of the type (RO)4Ti
can be easily reduced by Grignard reagents to provide a (RO)2Ti
equivalent in situ.3-7,10 In addition, Ti(III) hydride complexes are
known to be highly active catalysts for alkene isomerization.11a

In light of these considerations, the active catalyst in the present
reaction is postulated to be a transient complex of the type (2,6-
Me2C6H3O)2Ti(η2-alkene).11b On this basis, a possible catalytic
cycle is illustrated in Scheme 1. Reaction of the (RO)2Ti
equivalent (prepared in situin the presence of diene) with the
diene substrate should generate a metastable bicyclotitanacyclo-
pentane4. Complex4, in turn, undergoesâ-hydride elimination
to provide the corresponding Ti-H compound5, from which

reductive elimination of Ti(OR)2 occurs to produce methylenecy-
clopentane2.12

Sato has reported the quantitative preparation of bicyclotitana-
pentanes (i.e.,6) from 1,6-dienes and a stoichiometric amount of
a Ti(O-i-Pr)4/2 i-PrMgX reagent and these are stable at-50 °C
(Figure 1).3i,j Similarly, Rothwell has reported that the titanium
compound7 catalyzes the cycloisomerization of 1,7-octadiene
to 2-methyl-1-methylenecyclohexaneat high temperature (100
°C), but that the complex is stable enough below room temper-
ature to be isolated.7b Furthermore, the bicyclometallacyclopen-
tanes derived from Cp2TiCl2 or Cp2ZrCl2 and an appropriate
reducing agent are usually stable at up to room temperature for
further manipulations such as CO insertion and electrophilic
functionalization of the Ti-C bond(s) with carbonyl com-
pounds.2,13 In the present transformation, it can be considered that
the nature of the RO group plays an important role. The bulkiness
of the 2,6-Me2C6H3O moiety may decrease the decomposition
rate of the active Ti(II) species, but this ligand is small enough
not to retardâ-hydride elimination. In addition, the electron-
deficient character of the phenoxide ligands relative to aliphatic
alkoxy moieties provides an electron-poor Ti center that should
facilitate bothâ-hydrogen abstraction and alkene coordination.
These stereoelectronic effects enhance the viability of the catalytic
manifold so that efficient cycloisomerization occursat 0 °C to
ambient temperature.

In summary, we have developed a catalyst system derived from
(2,6-Me2C6H3O)4Ti and RMgX and shown this to be effective
for cycloisomerization reactions of 1,6- and 1,7-dienes. The
present transformation provides a highly efficient means to
synthesize methylenecycloalkanes, including heterocyclic com-
pounds.14

Supporting Information Available: Preparation details and experi-
mental results (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
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Table 2. Cyclisomerization Reaction of 1,6-Dienes Catalyzed by
(2,6-Me2H3O)4Ti and cyc-HexMgCl

a Isolated yield. In all entries, a small amount of the saturated
compound3 (5-10% yield) was produced.b Ratio was determined by
1H NMR and/or GC analysis.c 20 mol % of a Ti compound and 45
mol % of cyc-HexMgCl were used.d The reaction mixture was stirred
for 48 h. 29% of1f was recovered.e Yield was determined by NMR
analysis of the crude mixture using an internal standard.f For deter-
mination of the stereochemistry, see the Supporting Information.

Figure 1. Structures6 and7.

Scheme 1
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